ordinary differential equation

/ˌɔːrdɪnəri ˌdɪfəˈrɛnʃl ɪˈkweɪʒn/ オーディナリー ディファレンシャル イクエーション

1. 一つの独立変数とその導関数のみを含む方程式。

一つの独立変数とその導関数のみで構成される微分方程式を指します。物理学、工学、生物学など、様々な分野でシステムの挙動を記述するために用いられます。
The study of ordinary differential equations is fundamental in mathematical analysis. (常微分方程式の研究は、数学的解析において基礎的です。)

2. 複数の独立変数とその導関数を含む偏微分方程式とは異なり、一つの独立変数のみを扱う。

「微分方程式」という広い範疇の中で、一つの独立変数とその導関数のみを扱うものを「常微分方程式」と呼びます。複数の独立変数とその導関数を扱う「偏微分方程式」とは根本的に異なります。
An ordinary differential equation differs from a partial differential equation in the number of independent variables. (常微分方程式は、独立変数の数において偏微分方程式とは異なります。)
関連
differential equation
partial differential equation
initial value problem
boundary value problem
mathematical modeling